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Relativistic theory of nucleons in laser fields 

W Becker and H Mitter 
lnstitut fur Theoretische Physik der Universitat Tubingen, 7400 Tubingen, West Germany 

Received 1 February 1974 

Abstract. The Dirac equation for a particle with spin f and an anomalous magnetic moment 
in an external wave field is reduced to a set of coupled ordinary differential equations for a 
spin factor, in which the wavefunction differs from the corresponding one for a ‘normal’ 
particle. Exact solutions are given for a linearly polarized laser wave of finite length and for 
an infinitely extended plane wave with circular polarization. 

1. Introduction 

The behaviour of particles in laser fields is of some interest, since these fields are strong. 
So far the investigations have been focused on electrons. If the laser field is treated as an 
external wave field, the corresponding Dirac equation for the wavefunction can be 
solved exactly (Volkov 1935) as long as the wave fronts of the field are planes. The 
wavefunction is then used in further investigations on physical effects, like eg Compton 
scattering, pair creation etc. Nucleons are influenced by electromagnetic fields via the 
charge and the (anomalous) magnetic moment. In spite of the fact that the magnetic 
interactions produce very small effects due to the magnitude of the nuclear magneton, 
one might ask whether very strong fields could lead to visible consequences. As a basis 
the corresponding wavefunction for the particle in the presence of the field is needed. 
We shall calculate this wavefunction without treating the interaction with the laser as a 
small perturbation. We shall, however, assume that the particle can, in this context, be 
characterized by its static properties (charge and magnetic moment) alone. This seems 
to be a reasonable assumption, as long as the momentum transfer between the particle 
and the field is small. Some plausibility arguments for this assumption are discussed in 
the appendix. 

2. Reduction of the Dirac equation 

The laser field will be described by a plane wave with wavevector 

k P  = w(l ,n)  w = 21112 

characterized by the vector potential 

AP(x)  = aeipAi( ( ) .  

Here a denotes an intensity parameter and ejp (i = 1,2) are polarization vectors. We have 

k,eiP = 0, ePe. 1 J P  = - d i .  ( 2 )  
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and a summation convention Z:= is adopted for repeated latin indices. Ai  are arbitrary 
functions of their argument 5 = kPx, so that eg laser pulses of finite ‘duration’ are 
admitted, for which Ai vanishes for 5 outside some finite domain. The field tensor is 

(3) F”(x) = a’AV-aVA” = U F i ( < ) f i P V  

with 

The Dirac equation for a nucleon reads (cf Bjorken and Drell 1964; we shall use the 

( 5 )  

y matrices, and the metric of this reference) 

[y,(iP - caeiflAi(()) + gFi(t)+Pvfipv - .]I) = 0. 
Here we have introduced 

e ea me 
h E = -  g =  - y p ,  hc’ 2mc 

K = -  

where e = le1 is the elementary charge, m the nucleon mass and p the anomalous magnetic 
moment of the particle. For the proton we have p = 1.79, for the neutron we have to put 
p = -1.91 and c = 0. 

We introduce light-like components (Rohrlich 1971) using the vierbein 

and represent an arbitrary vector pP by 

pP = nPpu+ri”p,+e~pi 

in terms of the components 

With the abbreviations 

the Dirac equation takes the form 

1 [iyug+iyuG+yi(  a i&+caai(ul) +igA(u)yiyv-Ic I) = 0. 

If we imagine the laser to be switched on at  U = uo,  the solution has to reduce to the 

(11) 

Here I)o is a constant spinor and the exponential is the usual plane-wave expression 
with the constant vector p P  = (p/, p ” ,  p i )  on the mass shell 

free plane-wave solution for U < uo . Therefore we use the ansatz 

I)(xIP) = M(uI~)l(/o exp[-i(u0puf + v ~ u - x i ~ i ) I *  
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The Dirac matrix M remains to be determined. If we introduce 

Mu = yUM, M ,  = yuM,  X i @ ,  U) = p i  - €aai(U) (13) 

we obtain the equation 

The reduction to scalar equations is most easily carried out by means of a projection 
technique (Rohrlich 1971) using the operators 

P u  = %/,YU, P, = %/ur,. (15) 
If we observe 

BUM, = M u ,  P,M, = Mu, P,M, = P,M, = 0 

we obtain by application of P, onto the Dirac equation (14) 

1 
Mu = - - ( ~ i x i + ~ ) y ~ M , .  

2P" 

The entire matrix M can be expressed by M ,  

An equation for M ,  is obtained by application of P, onto equation (14) and insertion of 
relation (16). The result is 

This matrix equation can be reduced if we observe that a complete basis in the space 
of the y i  consists of the four elements 

1, Y i ,  O3 = i y ly2  = %EklYkYI, 

€ 1 2  = - € 2 1  = 1, €11 = €22 = 0 

and that a simplification is obtained by splitting off an appropriate exponential. Therefore 
we write 

(19) Mu = y , w 4  exp[ - i(u - UoIPu(U, U011 

with 

PU(U,  uo) = - - ( K ~  + x i @ ,  u')xi@, U')) du' 
#--U0 2P" U0 

B(u) = cl(u)+io3c2(u)+yibi(u). 

Thus our entire solution has the form 
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The only difference from the Volkov solution for a particle without anomalous moment 
is the presence of the factor B involving the function ci and bi ,  which remains to be deter- 
mined. If we insert our ansatz (19) into equation ( 1 8 )  and equate the coefficients of the 
basis elements, we obtain a linear system of differential equations, which does not 
contain p, so that B is independent of p. That this must be the case, is clear for physical 
reasons: the interaction of the field with the anomalous moment can only ‘shake’ the 
spin. It should also be noted that the exponential factor reduces to an ordinary plane 
wave for the neutron, since pu + p{ in this case. 

The system of equations for c i ,  bi reads 

C ;  = -gf,bi 

C ;  = -gf . t . .b.  
1 IJ J 

bf = g(c1f,+~2&ji). 

It can easily be seen that the quantity 

K = cici + bibi (23) 

is constant and that 

tij(C::Cj--bfbj) = 0. 

The coupling between the four equations (22) can be further reduced. If we introduce 

1 
c?, = -(c +ic ) 

J 2  l -  

(correspondingly for b and f) we obtain two separate systems 

from which we can deduce a second-order equation for c?, 
r ,  
J F  c’; -c;-+2g2f+f-c* = 0.  
fT 

The constant (23) reads in terms of the new functions (25) 

K = 2(c+c- + b + b - )  = 2c+c- [ 1 + +( 2) (%)I * 

Particular solutions of the system will be discussed later. We shall first investigate the 
normalization of the wavefunction, which turns out to be independent of c and b, and 
related questions. 

3. Current vector and normalization 

In order to discuss these problems simultaneously we shall consider the matrix element 
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The Dirac matrices used here have the property 

YOYJYO = Yr. yo(ia3)+yo = -ia3. 

Since c,. b, are real, we can rewrite R in the form 

1 1 
x r P, +yv-(yini(P, U) + K )  (c1 + ia3c2 + yibi). i 2P" 

This formula is useful for the computation of matrix elements in general. 
For the components of the particle current 

jr(x) = ~WP)YWXIP) 
we obtain, evaluating the corresponding matrix elements 

For the neutron this yields the free current. The normalization of the wavefunction has 
to be achieved in such a way that the appropriate boundary conditions for a laser pulse 
of finite extent (in U) are respected. We observe that the four vector 

I " X l P 9  4 )  = $(xlq)Y"(xlP) 

satisfies a continuity equation. The surface integral 

N,,  = j kt"(XIP5 9 )  da,(x) 

~ q p  = j kt"(xlq, P) d2Xi do = ( 2 . ) 3 ~ s ( p " - q " ) ~ , ( ~ i - q i ) ( ~ o Y " ~ o ) .  

is therefore independent of the hypersurface of integration. Thus we can take the 
surface U = constant, da, = d2xi dv and obtain 

(33) 

Thus we should take K = ( 2 ~ ) - ~  for normalized t,bo in order to obtain the usual 
&function normalization for plane waves. The construction of wave packets can be done 
as usual (Neville and Rohrlich 1971). 

4. Special solutions 

In some special cases the differential equations for c and b can be solved analytically. 
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We consider at first a linearly polarized laser wave 

fib) = f(4, f2 = 0. (34) 

In this case the system (22) can be transformed into a linear system with constant 
coefficients by introduction of a new variable 

v]  = g p ( U . ) d u ’  = g F(5’)dt’ = g(A,(O-A1(50)) (35) c 
in place of U. Here uo is the initial point, at which the laser is switched on. The general 
solution of equation (22) is 

ci = ai cos v]  + p i  sin v]  

bi = ai sin v]  -pi cos v]  

where tli, pi are arbitrary integration constants to be fixed by the initial conditions. The 
constant K is 

K = aiai + p i p i .  (37) 
We note that the case of a constant crossed field is contained in our formulae (34)-(36), 

if we take 
40 G 4 41 

otherwise. 

In this case am has to be identified with the magnitude of the field strength and n is 
the direction of the Poynting vector. For 5 < CO the solution goes over into the free one. 
If a solution is wanted in which the field is always present we have to take Ai = (Si, 
for all values of 5 and omit the factor exp( -iuop;). The constants (including the lower 
limit of the integration in equation (35)) have to be fixed by imposing initial conditions 
on some null plane 5 = to inside the field, since the particle is never separated from the 
latter. 

Another simple solution can be found for a plane wave laser with circular polarization 

Fl(<) = -sin 5 ,  F,(4) = -cos 4. (38) 
The differential equations (26) have constant coefficients in this case and the general 
solution is 

c1 = gBlcosp14+gCl s i n p 1 5 + B 2 c o s p 2 4 + C 2 s i n p 2 ~  

c2 = gBl sinp14-gC1 cosp14+B2 s i n p , ~ - C , c o s p , ~  

bl = p l ( - B l  cosp25+C1 sinp25)+-(B2cosplC-C2 sinpl()  
(39) 

g 
P1 

where Bi ,  Ci are integration constants, 

P l . 2  = MkJ(1+4g2))  
and we have 
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If the wave (38) is taken literally as an infinitely extended one, the particle is never 
separated from the laser beam and we again have to omit the factor exp( - iu,p{) in the 
solution (21). The integration constants have then to be fixed by assuming prescribed 
values for c i , b i  on some null plane inside the laser beam. The resulting integration 
constants depend on g in such a way that the solution tends smoothly to the Volkov 
solution for g + 0 (we have anticipated this behaviour, including a factor g in the 
appropriate places). It has, however, to be observed that the assumption of an infinitely 
extended laser wave is quite unrealistic. In actual situations the particles should always 
be separated from the laser beam in some region, a situation which we can imitate only 
by a finite pulse. 

5. Conclusion 

The structure of the solutions, which we have found, resembles the corresponding one 
of the Volkov solution for a particle without anomalous moment, the only difference 
being a spin factor. In particular it is clear from equation (32) that the densityj, is the 
same as for a free particle. In order to observe effects of the laser field one has to in- 
vestigate processes like eg the Compton effect. For the corresponding theory the 
wavefunction as derived here is needed. It should, however, be observed that the 
characteristic laser effects (like the generation of harmonics or the intensity-dependent 
frequency shift) will be much smaller than for electrons, since the magnitude of these 
effects is determined by (ea/mc2). Thus it is very doubtful whether the influence of the 
magnetic coupling term on these effects can be made visible experimentally. 

Appendix 

We have assumed that the particle in its interaction with the laser field can be 
characterized by its static charge and anomalous magnetic moment alone, so that a 
corresponding Dirac equation can be used. This is, in fact, an approximation valid for 
comparatively low frequencies of the external field. The approximation is most easily 
exhibited in terms of the Green function of the particle in the external field 

G(x, x’) = (x~G~x’) .  

Its inverse G- I ,  considered as an operator in coordinate space, is the differential operator 
which, acting on the wavefunction, yields the corresponding wave equation. An 
expansion of G -  for low frequencies was developed by Klein (1955) on the assumption 
that strong interactions may be described by a renormalizable field theory. It is based 
upon the invariance against Lorentz transformations, gauge transformations and charge 
conjugation, which fixes the form of G- in the neighbourhood of the mass shell (in 
which we are interested, since we want an equation for the wavefunction) to a large 
extent. The remaining constants are identified by phenomenological considerations. 
The result reads, with d‘ = P” - eA” and the anomalous moment pLA 

P A  G - = ypnp - K - Io,vFpV + , 
L 

which is the expression we have used for our wave equation. The next term in the 
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expansion would contain higher powers of the field strength in the form of the combina- 
tions (F* is the dual field tensor) 

where p, o, A are constants. In our case only the last term is different from zero. In the 
non-relativistic limit its contribution to G- ’ becomes proportional to LEZ, where 
can be understood as an electric polarizability of the nucleon, which is phenomeno- 
logically determined as 

2 Iv ‘(L) 2 

K m,c2 

where m, is the pion mass. Thus the term has in our case a factor 

ea w 
m,c2 K ,  
-- 

in comparison with the contribution from the magnetic moment and can therefore 
safely be neglected. 
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